17 research outputs found

    EDRA:A Hardware-assisted Decoupled Access/Execute Framework on the Digital Market

    Get PDF
    EDRA was an Horizon 2020 FET Launchpad project that focused on the commercialization of the Decoupled Access Execution Reconfigurable (DAER) framework - developed within the FET-HPC EXTRA project - on Amazon's Elastic Cloud (EC2) Compute FPGA-based infrastructure. The delivered framework encapsulates DAER into a EC2 virtual machine (VM), and uses a simple, directive-based, high-level application programming interface (API) to facilitate application mapping to the underlying hardware architecture. EDRA's Minimum Viable Product (MVP) is an accelerator for the Phylogenetic Likelihood Function (PLF), one of the cornerstone functions in most phylogenetic inference tools, achieving up to 8x performance improvement compared to optimized software implementations. Towards entering the market, research revealed that Europe is an extremely promising geographic region for focusing the project efforts on dissemination, MVP promotion and advertisement

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    The AXIOM platform for next-generation cyber physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are widely used in many applications that require interactions between humans and their physical environment. These systems usually integrate a set of hardware-software components for optimal application execution in terms of performance and energy consumption. The AXIOM project (Agile, eXtensible, fast I/O Module), presented in this paper, proposes a hardware-software platform for CPS coupled with an easy parallel programming model and sufficient connectivity so that the performance can scale-up by adding multiple boards. AXIOM supports a task-based programming model based on OmpSs and leverages a high-speed, inexpensive communication interface called AXIOM-Link. The board also tightly couples the CPU with reconfigurable resources to accelerate portions of the applications. As case studies, AXIOM uses smart video surveillance, and smart home living applicationsThis work is partially supported by the European Union H2020 program through the AXIOM project (grant ICT-01-2014 GA 645496) and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). We also thank the Xilinx University Program for its hardware and software donations.Peer ReviewedPostprint (author's final draft

    Secondary Storage Management for Web Proxies

    No full text
    World-Wide Web proxies are being increasingly used to provide Internet access to users behind a firewall and to reduce wide-area network traffic. Recent results suggest that disk I/O is increasingly becoming the limiting factor for the performance of web proxies. In this paper we study the overheads associated with disk I/O for web proxies, and propose secondary storage management alternatives that improve performance. We use a combination of experimental evaluation and simulation based on traces from busy web proxies. We show that web proxies experience significant overheads due to disk I/O. We propose several file management methods that reduce the disk I/O overhead overhead by a factor of 25 overall, resulting in a single-disk service rate that exceeds 500 (URL-get) operations per second. 1 Introduction World-Wide Web proxies are being increasingly used to provide Internet access to users behind a firewall and to reduce wide-area network traffic. Recent results suggest that disk I/O..

    The AXIOM software layers

    No full text
    People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed. The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (published version

    The AXIOM software layers

    No full text
    People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed. The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer Reviewe

    The AXIOM project (Agile, eXtensible, fast I/O Module)

    No full text
    Abstract-The AXIOM project (Agile, eXtensible, fast I/O Module) aims at researching new software/hardware architectures for the future Cyber-Physical Systems (CPSs). These systems are expected to react in real-time, provide enough computational power for the assigned tasks, consume the least possible energy for such task (energy efficiency), scale up through modularity, allow for an easy programmability across performance scaling, and exploit at best existing standards at minimal costs. Current solutions for providing enough computational power are mainly based on multi-or many-core architectures. For example, some current research projects (such as ADEPT or P-SOCRATES) are already investigating how to join efforts from the High-Performance Computing (HPC) and the Embedded Computing domains, which are both focused on high power efficiency, while GPUs and new Dataflow platforms such as Maxeler, or in general FPGAs, are claimed as the most energy efficient. We present the project's initial approach, ideas and key concepts, and describe the AXIOM preliminary architecture. Our starting point uses power efficient multi-core nodes, such as ARM cores and FPGA accelerators on the same die, as in the Xilinx Zynq. We will work to provide an integrated environment that supports programmability of the parallel, interconnected nodes that form a CPS system, and evaluate our ideas using demanding test application scenarios
    corecore